

DESTAQUES DO MAGMAiron 5.5

Previsão dos defeitos de rechupe com um novo e poderoso algoritmo, levando em consideração:

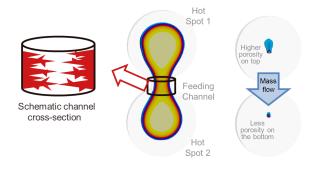
- Transporte convectivo durante a solidificação
- O estado metalúrgico da liga
- Efeitos da inoculação sobre a precipitação da grafita
- Pressão atmosférica e metalostática sobre o fluxo local de alimentação
- Expansão da grafita e contração da austenita
- Resistência de fluxo em zonas pastosas de solidificação
- ¬ Impacto da **estabilidade do molde** na tendência de rechupes

PRINCIPAIS BENEFÍCIOS

O MAGMAiron prevê quantitativamente a microestrutura e defeitos de contração no ferro fundido em função da liga, do estado metalúrgico e efeitos de inoculação, oferecendo:

- ¬ Aumento da **segurança** na previsão de rechupes
- Robustez e otimização em sistemas de canais e alimentação
- Redução de custo evitando refugos através de parâmetros de processo otimizados
- Disponibilidade de novas características direcionadas às particularidades dos ferros cinzento, nodular e vermicular

O MAGMAiron foi aprimorado no que diz respeito a transferências térmicas, solidificação e ao algoritmo de alimentação. Funcionalidades completamente novas apoiam o fundidor considerando efeitos metalúrgicos e do tratamento do metal na solidificação e comportamento de alimentação para ferros fundidos.


A alimentação em ferros fundidos depende de múltiplos parâmetros. Em conjunto a alimentação e a formação de rechupes são fortemente controladas pela metalurgia da liga e por condições de processo. O MAGMAiron considera as mudanças de densidade baseadas na formação local de grafita e austenita. O equilíbrio entre expansão e contração destas fases, combinado com a alimentação da liga, indica o risco de formação de rechupes.

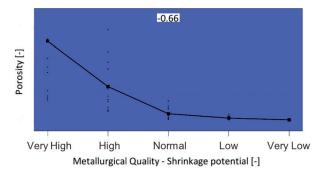
Precisão na previsão de rechupe MAGMAiron

NOVO ALGORITMO DE ALIMENTAÇÃO - MAGMAiron 5.5

O centro do aprimoramento do módulo MAGMAiron consiste no novo algoritmo de alimentação inteligente da versão 5.5, que prevê de forma mais precisa a formação de rechupes. O software calcula o fluxo de metal em regiões parcialmente solidificadas e a capacidade resultante de alimentar regiões adjacentes. Tanto a qualidade do metal quanto o estado de inoculação influenciam a alimentação e a formação de rechupes no produto.

O novo algoritmo de solidificação considera o fluxo de alimentação através de regiões parcialmente solidificadas

ALIMENTAÇÃO POR PRESSÃO


Diferenças de pressão são criadas no metal através da combinação da pressão metalostática, contração local de austenita, precipitação da grafita e rigidez do molde.

O MAGMAiron considera as mudanças de densidade com base na precipitação local de grafita e austenita.

- Diferentes zonas de alimentação permanecem em contato: fluxo de massa é possível dependendo da diferença de
- A permeabilidade de uma zona de alimentação parcialmente solidificada é uma função do progresso da solidificação local

Com o inovador algoritmo de alimentação, é possível considerar de forma ainda melhor a influência da qualidade do líquido, a prática de inoculação e da distribuição de pressão local no desenvolvimento de rechupes.

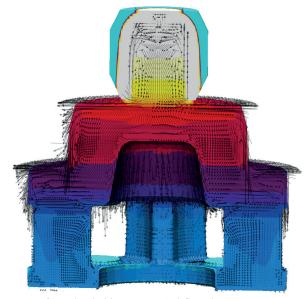
Efeito da qualidade do líquido sobre a quantidade do rechupe

QUALIDADE METALÚRGICA

A precipitação da grafita durante a solidificação é fortemente influenciada pelo tratamento de banho do ferro fundido, matérias-primas e aditivos utilizados. As configurações do MAGMAiron abrem a possibilidade de considerar diferentes práticas de fundição, influenciando a qualidade do banho. O novo parâmetro:

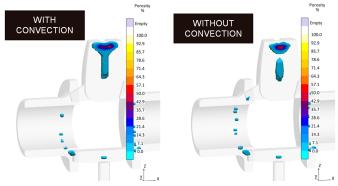
- modifica a quantidade de grafita precipitada
- afeta a posição e o tamanho dos rechupes

IMPACTO DA INOCULAÇÃO


A qualidade da inoculação influencia fortemente a microestrutura local. Além disso, o MAGMAiron considera o impacto do tamanho previsto da célula eutética ou da contagem de nódulos no comportamento da solidificação local.

CONVECÇÃO TÉRMICA DURANTE A SOLIDIFICAÇÃO

A simulação da solidificação está considerando a condução de calor entre o molde, a peça e o metal.


Os diferentes níveis de inoculação mudam a magnitude da porosidade prevista

As correntes formadas devido a convecção influenciam o comportamento de

Devido as diferenças de densidade que ocorrem no metal durante a solidificação, formam-se correntes convectivas que mudam a distribuição de temperatura na peça. A convecção durante a solidificação é agora calculada como um padrão para peças fundidas de ferro. O impacto do fluxo na distribuição da temperatura durante a solidificação influencia o comportamento de alimentação tanto em peças fundidas de grande porte, como também na produção em série.

- Consideração da condução e convecção sobre os campos térmicos resultantes
- Influência da resistência ao fluxo em zonas pastosas
- Impacto nos tempos de solidificação, fluxos de alimentação e rechupes resultantes
- Aumento moderado no tempo de cálculo

Previsão de rechupes com e sem convecção

ESTABILIDADE DO MOLDE

O MAGMAiron considera o impacto da estabilidade do molde sobre o desempenho da alimentação durante a solidificação.

- A interação de pressão entre a expansão da grafita e a rigidez do molde é considerada e calculada localmente.
- Diferentes tipos de molde podem ser considerados.

O NOVO PADRÃO

- O novo algoritmo de alimentação substitui os algoritmos "standard" e "extended" para todas as classes de ferro fundido, desde de que seja considerada a simulação da microestrutura.
- O modelo de convecção fica ativo por padrão, podendo ser desativada pelo usuário.

